翻訳と辞書 |
Length of a Weyl group element : ウィキペディア英語版 | Length of a Weyl group element In mathematics, the length of an element ''w'' in a Weyl group ''W'', denoted by ''l''(''w''), is the smallest number ''k'' so that ''w'' is a product of ''k'' reflections by simple roots. (So, the notion depends on the choice of a positive Weyl chamber.) In particular, a simple reflection has length one. The function ''l'' is then an integer-valued function of ''W''; it is a length function of ''W''. It follows immediately from the definition that ''l''(''w''−1) = ''l''(''w'') and that ''l''(''w''''w'''−1) ≤ ''l''(''w'') + ''l''(''w' ''). == References ==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Length of a Weyl group element」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|